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Fraser University, Burnaby, British Columbia, V5A 1S6; University of Toronto, Toronto,
Ontario, M5S 1A7; and TRIUMF, Vancouver, British Columbia, V6T 2A3, Canada

aiUniversity of Michigan, Ann Arbor, Michigan 48109, United States
ajMichigan State University, East Lansing, Michigan 48824, United States

akInstitution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
alUniversity of New Mexico, Albuquerque, New Mexico 87131, United States

amNorthwestern University, Evanston, Illinois 60208, United States
anThe Ohio State University, Columbus, Ohio 43210, United States

30Visitor from Chinese Academy of Sciences, Beijing 100864, China.

4



aoOkayama University, Okayama 700-8530, Japan
apOsaka City University, Osaka 588, Japan

aqUniversity of Oxford, Oxford OX1 3RH, United Kingdom
arIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova,

I-35131 Padova, Italy
asLPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252

France
atUniversity of Pennsylvania, Philadelphia, Pennsylvania 19104, United States

auIstituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and
Scuola Normale Superiore, I-56127 Pisa, Italy

avUniversity of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
awPurdue University, West Lafayette, Indiana 47907, United States

axUniversity of Rochester, Rochester, New York 14627, United States
ayThe Rockefeller University, New York, New York 10021, United States

azIstituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma,
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Abstract

We present the result of a search for a massive color-octet vector particle, (e.g. a
massive gluon) decaying to a pair of top quarks in proton-antiproton collisions
with a center-of-mass energy of 1.96 TeV. This search is based on 1.9 fb−1

of data collected using the CDF detector during Run II of the Tevatron at
Fermilab. We study tt̄ events in the lepton+jets channel with at least one b-
tagged jet. A massive gluon is characterized by its mass, decay width, and the
strength of its coupling to quarks. These parameters are determined according
to the observed invariant mass distribution of top quark pairs. We set limits on
the massive gluon coupling strength for masses between 400 and 800 GeV/c2

and width-to-mass ratios between 0.05 and 0.50. The coupling strength of the
hypothetical massive gluon to quarks is consistent with zero within the explored
parameter space.

Keywords: massive gluon, top quark
PACS: 13.85.Rm, 14.65.Ha, 14.80.-j

1. Introduction

The top quark is the heaviest known elementary particle, with a mass very
close to the electroweak symmetry-breaking scale. As such, the top could be sen-
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sitive to physics beyond the standard model (SM) [1, 2]. New particles decaying
to tt̄ pairs can be scalar or vector, color-singlet or color-octet; a scalar resonance
is predicted in two-Higgs-doublets models [3, 4]; vector particles appear as mas-
sive Z-like bosons in extended gauge theories [5], or as Kaluza-Klein states of
the gluon and Z boson [6, 7], or as colorons [1]. Searches for a color-singlet par-
ticle decaying to a tt̄ pair have been performed by CDF and D0 collaborations
in Run I [8, 9] and Run II [10, 11, 12].

In this Letter we describe a search for a massive color-octet vector particle G,
which we call generically a “massive gluon”. We assume G has a much stronger
coupling to the top quark than to the lighter quarks, q = (u, d, c, s, b) [1]. We also
assume the massive-massless gluon coupling is negligible. A Feynman diagram
for tt̄ production via massive-gluon is shown in Fig. 1. The coupling strength
of massive gluons to light and top quarks are λqgs and λtgs, respectively, where
gs is the coupling constant of the SM strong interaction.

In tt̄ production, there are three observable parameters: the product of
massive gluon coupling strength λ ≡ λqλt, mass M , and width Γ. In this
analysis we consider only the possibility of novel strong-sector production; we
assume that the weak decay of the top quark follows the SM. Since the color
and the current structures of G and SM gluon (g) are identical, interference
between processes through massive gluon and massless gluon will produce a tt̄
invariant mass distribution with an enhanced signal that has a characteristic
form [1] as shown later in Fig. 3. If the coupling of G to quarks is assumed to
be parity-conserving, the production matrix element can be written as

|Mprod.|2 =
2
9
g4

s ŝ2(2 − β2 + β2 cos2 θ)(Πg + λΠint. + λ2ΠG), (1)

where ŝ, β, and θ are the tt̄ invariant mass squared, the velocity of the top
quark, and the angle between the top quark and the incident quark in the tt̄
center of mass system, respectively. The propagator factors of gluons, massive
gluons, and interference are

Πg =
1
ŝ2

, ΠG =
1

(ŝ − M2)2 + M2Γ2
, Πint. =

2
ŝ

ŝ − M2

(ŝ − M2)2 + M2Γ2
. (2)

We search for tt̄ pairs produced by massive and massless gluons, where inter-
ference between these diagrams (denoted by g +G) is considered, by examining
the invariant mass spectrum of observed tt̄ candidate events.
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Figure 1: A Feynman diagram showing tt̄ production via a massive gluon in the “lepton+jets”
decay channel.

2. Selection of candidate events

The search is based on data collected with the CDF II detector between
March 2002 and May 2007 at the Fermilab Tevatron pp̄ collider, corresponding
to an integrated luminosity of about 1.9 fb−1. The CDF II detector is a gen-
eral purpose detector which is azimuthally and forward-backward symmetric.
The detector consists of a charged particle tracking system composed of silicon
microstrip detectors and a gas drift chamber inside a 1.4 T magnetic field, sur-
rounded by electromagnetic and hadronic calorimeters and enclosed by muon
detectors. The details of the detector are described elsewhere [13].

The cross section for standard model tt̄ production in pp̄ collisions at
√

s =
1.96 TeV is dominated by qq̄ annihilation (∼ 85%). The remaining ∼ 15% is
attributed to gluon-gluon fusion [14]. Standard model top quarks decay almost
exclusively to Wb. The search presented here focuses on the tt̄ event topology
wherein one W boson decays hadronically while the other decays to an electron
or muon and its corresponding neutrino. Both b quarks and the two decay
quarks of the second W boson appear as jets in the detector. Accordingly, tt̄
candidates in this “lepton + jets” channel are characterized by a single lepton,
missing transverse energy 6ET [15], due to the undetected neutrino, and four
jets.

We use lepton triggers that require an electron or muon with pT > 18 GeV/c.
Events included in our analysis must first contain an isolated electron (muon)
with ET > 20 GeV (pT > 20 GeV/c) in the central detector region with
|η| < 1.0. Electron and muon identification methods are described in Ref. [16].
We remove events which have multiple identified leptons, cosmic ray muons,
electrons from photon-conversion. We also remove events with tracks (not iden-
tified as leptons), such that its momenta added to the primary lepton momenta
gives an invariant mass equal to the Z mass. The position of the primary vertex
(along the beam) is required to be within 60 cm of the center of the nominal
beam intersection and consistent with z position of the high-pT lepton at the
closest approach to the beamline. Events must also feature at least 20 GeV
of 6ET attributable to the presence of a high-pT neutrino, as well as exactly
four jets with |η| < 2.0 and ET > 20 GeV (jet ET corrections are described

7



Table 1: Background composition to the qq → tt process and the expected numbers of events.
Systematic uncertainties coming from the background estimation method are listed. Elec-
troweak includes single top quark, diboson production, and Z bosons + jets productions. A
luminosity of 1.9 fb−1 is assumed.

Source Expected number of events
Electroweak 9.9 ± 0.5
W + bottom 16.5 ± 6.7
W + charm 12.9 ± 5.2
Mistags 16.7 ± 3.6
QCD 13.6 ± 11.7
SM gg → tt̄ 48.2 ± 15.6
Total Background (nexp

b ± σ
exp
b ) 117.8 ± 19.8

SM qq̄ → tt̄ (σ = 5.6 pb) 211.7 ± 29.3
Data 371

in Ref. [17]). Jets are clustered with a cone-based algorithm, with a cone size
∆R ≡

√
∆φ2 + ∆η2 = 0.4. We reduce non-tt̄ backgrounds by requiring at least

one jet identified by the displaced secondary vertex “b-tagging” algorithm [13]
as being consistent with the decay of a long-lived b hadron.

3. Background

The background to the tt̄ signal is mostly from W+jets events with a falsely-
reconstructed secondary vertex (Mistags) or from W+jets events where one or
more jets are due to heavy-flavor quarks. Smaller contributions are from QCD
multi-jet production, in which either the W signature is faked when jets contain
semi-leptonic b-hadron decays or when jets are mis-reconstructed and appear
as electrons and missing ET , single top quark production, diboson (WW , WZ,
ZZ) production, and Z bosons produced in association with multiple jets. The
methods used to estimate the backgrounds are detailed in Ref. [13]. The gg → tt̄
process is taken as a background for this search, which is estimated by assuming
0.16 ± 0.05 gluon fusion fraction from Ref. [14]. The estimated backgrounds in
the sample are summarized in Table 1. The diboson and gg → tt̄ background
processes are modeled with pythia [18] , W+jets and Z+jets processes with
alpgen [19], and QCD with data.

4. tt̄ invariant mass reconstruction

We search for a massive gluon by examining the tt̄ invariant mass (
√

ŝtt̄)
spectrum of the selected events. Our analysis procedure consists of two steps.
(A) We first reconstruct the parton level momentum set of tt̄ = (bl+ν)(b̄l−ν̄),
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event-by-event, with the Dynamical Likelihood Method (DLM) [20, 21]. The
likelihood in the DLM is defined by the differential cross section per unit phase
space volume, multiplied by a posterior transfer function (TF), which is a prob-
ability density function from the observed to the parton kinematic quantities.
For a given event, different parton kinematics set are inferred with the TF. We
assume in this paper the TF is independent of the production matrix for tt̄,
hence in the reconstruction, we remove the tt̄ production matrix from the like-
lihood. We constrain Mt = 175 GeV/c2 in the reconstruction. For each event
the reconstructed

√
ŝtt̄ is averaged over inferred parton paths, and denoted by√

ŝr. We denote the true
√

ŝtt̄ at the parton level by
√

ŝp.
(B) We interpret

√
ŝr as an observed quantity and apply a standard unbinned

likelihood technique to reproduce the
√

ŝr distribution using Monte Carlo (MC)
events, which consist of signal and relevant background processes.

The
√

ŝr distribution for the signal g + G process is expressed relative to
[dσ/d

√
ŝp]∗SM :qq̄→tt̄, the SM cross section after the event selection cuts (ex-

pressed by ∗) by

ps[
√

ŝr; α] ≡ N(α)
∫ [

dσ

d
√

ŝp

]∗

SM :qq̄→tt̄

R(
√

ŝp;α)f(
√

ŝr −
√

ŝp;
√

ŝp)d
√

ŝp, (3)

where α ≡ (λ,M, Γ) is a set of massive gluon parameters, and N(α) is the
normalization factor. The ratio of g + G to SM tt production cross sections is

R(
√

ŝp; α) = 1 + 2λ
ŝp(ŝp − M2)

(ŝp − M2)2 + M2Γ2
+ λ2

ŝ2
p

(ŝp − M2)2 + M2Γ2
. (4)

In this ratio, PDF effects, top propagators, decay matrix elements and the final
state densities for g + G and SM processes cancel out, making it possible to
generate (or derive) g + G events with specified α from standard model tt̄ MC
events. The resolution function f translates

√
ŝp to

√
ŝr. It is obtained from

the scatter plot of
√

ŝr −
√

ŝp vs.
√

ŝp using the pythia SM qq̄ → tt̄ MC
sample, as shown in Fig. 2. The peak and half maximum points of

√
ŝr −

√
ŝp

are typically −0.2+15.7
−13.7, −0.9+31.0

−40.7, and −3.5+39.6
−68.7 GeV/c2 at √

sp = 400, 600,
and 800 GeV/c2, respectively.
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Figure 2: Resolution function f(y; x), where x =
√

ŝp and y =
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ŝr −
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ŝp.

Figure 3 shows an example of ps[
√

ŝr; α]. The first(second) peak is due
to g(G). At the parton level, the G peak(dip) is above(below) M for posi-
tive(negative) λ, while at the reconstructed

√
ŝr distribution the peak(dip) is

shifted due to the resolution function. The pythia MC with Mt = 175 GeV/c2

is used to estimate [dσ/d
√

ŝp]∗SM :qq̄→tt̄.
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Figure 3: Signal probability density function ps[
√

ŝr; α] with M = 600 GeV/c2, Γ/M = 0.10,
and λ = ±0.3.

5. Extraction of coupling strength

If M and Γ/M are given, the
√

ŝr distribution of the data is a function of λ
and the numbers of the signal and background events, ns and nb. By applying
a three parameter unbinned likelihood method for (λ, ns, nb), the likelihood
function L for the distribution is
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L

„

λ, ns, nb|M,
Γ

M

«

≡ G(nb; n
exp
b , σ

exp
b )P (N ; n)

N
Y

i=1

nsps(
√

ŝr(i); α) + nbpb(
√

ŝr(i))

n
. (5)

The function G(nb;n
exp
b , σ

exp
b ) constrains the total background normalization

with Gaussian probability around the central value n
exp
b and its uncertainty

σ
exp
b as given in Table 1. P (N ; n) is the Poisson probability for observing

N events where n = ns + nb are expected. ps(
√

ŝr(i);α) and pb(
√

ŝr(i)) are
probability densities that the i-th event is due to signal or background, respec-
tively. We calculate the likelihood as a function of λ for a number of values of
(M, Γ/M), where the value of M ranges from 400 to 800 GeV/c2 at 50 GeV/c2

intervals. Γ/M is considered at values of 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5.
The analysis method is tested with pseudo-experiments (PE’s), where the

background events are generated according to Table 1, and the total number of
events is normalized to the 371 observed number of candidate events. An exam-
ple of the analysis of a single pseudo-experiment is shown in Fig. 4. Points repre-
sent the observed

√
ŝ distribution for a simulated signal sample with Γ/M = 0.1,

M = 600 GeV/c2 and λ = 0.1. λ is estimated by maximizing the likelihood L,
given the observed

√
ŝr spectrum. The 95% C.L. lower/upper two-sided limit

on λ at the given mass and width is found by taking −2 ln(L/Lmax) = 3.84.
We measure our expected sensitivity using a large number of null signal PE’s.
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Figure 4: An example of a likelihood fit to
√

ŝr spectrum for 1.9 fb−1 MC events (points),
which includes the massive gluon with a Γ/M = 0.1, M = 600 GeV/c2, and λ = 0.1. The
solid line is the best fit to a superposition of g + G signal and the expected background (dash
line) and SM prediction (dot-dash line). The likelihood fit is performed assuming Γ/M = 0.1
and M = 600 GeV/c2. The inset shows the −2 ln L as a function of λ.
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We have studied contributions to the total uncertainty arising from system-
atic effects. Variation of the tt̄ invariant mass distribution affects the estimation
of the coupling strength, λ. The jet energy scale (JES) and top-quark mass
are varied simultaneously (within their uncertainties) to properly account for
their correlation [22, 23]. The uncertainties of the parton distribution functions
(PDF) are estimated by comparing PE’s where different PDF sets (CTEQ5L[24]
vs MRST72[25]) are used; additionally, ΛQCD and the CTEQ6M[24] PDF eigen-
vectors are varied. The systematic effect due to choice of MC generator is esti-
mated by comparing PE’s using events generated by pythia and herwig [26].
The scale of next-to-leading-order systematic effects is estimated by using events
generated with mc@nlo[27]. Systematic uncertainties in modeling initial- and
final-state gluon radiation are estimated using pythia, where the range of QCD
parameters are varied in accordance with CDF studies of Drell-Yan data [28].
The uncertainty in the MC modeling of the multiple interaction and the b-
tagging efficiency as a function of jet pT are evaluated. We estimate systematic
uncertainty arising from background, which are JES, PDF, b-tagging efficiency,
background composition, and Q2 scale of W+jets. All systematic uncertainties
are evaluated at the full range of coupling strengths, gluon masses and decay
widths considered, and are incorporated in the likelihood function. The largest
contribution is from JES and Mt uncertainty, which limits sensitivity at low
invariant mass. Statistics limits the sensitivity at high invariant mass.

6. Results

The tt̄ invariant mass distribution observed in data is shown in Fig. 5. The
best fits of λ are consistent with the SM prediction, including a fluctuation
of ∼ 1.7σ within the explored parameter range. We search for massive gluon
with mass in the range [400,800] GeV/c2, though events with gluon masses
beyond this region are included in the analysis. The 95% C.L. limits on the
coupling strength λ at Γ/M = 0.1 and Γ/M = 0.5 are shown in Fig. 6. A less
stringent limit above 650 GeV/c2 is due to 4 events on the high mass tail. The
SM predicts 1.4 events above 850 GeV/c2, 4 events observed correspond to a
Poisson probability of 5.4 %. The limits at 95% C.L. for several values of M
and Γ/M are listed in Table 2. The limits become weaker with higher M and
wider Γ/M .
In conclusion, we peform an exploratory search for a color-octet vector particle
in general with minimal model dependence. No significant indication of the
existence of massive gluon with |λ| > 0.5 is observed in our search region of
400 GeV/c2 < M < 800 GeV/c2 and 0.05 < Γ/M < 0.5.
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Table 2: Expected and observed 95% C.L. lower/upper limits on λ. Expected limits are in
parentheses.

Γ/M = 0.05 Γ/M = 0.10 Γ/M = 0.20 Γ/M = 0.30 Γ/M = 0.40 Γ/M = 0.50
M=400 (-0.036 / 0.042) (-0.046 / 0.086) (-0.074 / 0.156) ( -0.11 / 0.26) (-0.15 / 0.30) (-0.17 / 0.35)

-0.043 / 0.040 -0.056 / 0.067 -0.089 / 0.11 -0.12 / 0.18 -0.16 / 0.20 -0.19 / 0.23
M=450 (-0.038 / 0.040) (-0.046 / 0.058) (-0.065 / 0.087) (-0.087 / 0.13) (-0.12 / 0.19) (-0.13 / 0.24)

-0.045 / 0.027 -0.057 / 0.042 -0.086 / 0.06 -0.12 / 0.09 -0.15 / 0.14 -0.18 / 0.19
M=500 (-0.051 / 0.038) (-0.060 / 0.053) (-0.083 / 0.087) ( -0.12 / 0.13) (-0.13 / 0.18) (-0.16 / 0.24)

-0.059 / 0.034 -0.067 / 0.043 -0.10 / 0.06 -0.14 / 0.10 -0.17 / 0.14 -0.20 / 0.19
M=550 (-0.058 / 0.049) (-0.075 / 0.069) ( -0.13 / 0.10 ) ( -0.15 / 0.15) (-0.20 / 0.20) (-0.31 / 0.23)

-0.064 / 0.039 -0.083 / 0.055 -0.12 / 0.08 -0.16 / 0.13 -0.19 / 0.18 -0.23 / 0.20
M=600 (-0.074 / 0.058) ( -0.10 / 0.082) ( -0.19 / 0.12 ) ( -0.21 / 0.18) (-0.35 / 0.22) (-0.65 / 0.28)

-0.073 / 0.048 -0.10 / 0.069 -0.16 / 0.10 -0.15 / 0.16 -0.22 / 0.20 -0.23 / 0.28
M=650 (-0.098 / 0.077) ( -0.14 / 0.092) ( -0.24 / 0.15 ) ( -0.36 / 0.20) (-0.58 / 0.27) (-0.80 / 0.33)

-0.081 / 0.069 -0.096 / 0.083 -0.13 / 0.15 -0.16 / 0.20 -0.26 / 0.29 -0.34 / 0.35
M=700 ( -0.11 / 0.082) ( -0.16 / 0.12 ) ( -0.27 / 0.17 ) ( -0.44 / 0.25) (-0.68 / 0.32) (-0.90 / 0.42)

-0.070 / 0.091 -0.068 / 0.14 -0.091 / 0.19 -0.13 / 0.29 -0.31 / 0.37 -0.37 / 0.47
M=750 ( -0.14 / 0.11 ) ( -0.20 / 0.14 ) ( -0.33 / 0.21 ) ( -0.50 / 0.31) (-0.71 / 0.39) (-1.00 / 0.52)

-0.020 / 0.13 -0.021 / 0.18 -0.033 / 0.26 -0.03 / 0.38 -0.06 / 0.47 -0.37 / 0.61
M=800 ( -0.16 / 0.12 ) ( -0.24 / 0.17 ) ( -0.39 / 0.27 ) ( -0.59 / 0.37) (-0.80 / 0.49) (-1.09 / 0.62)

-0.011 / 0.18 -0.017 / 0.26 0.017 / 0.37 -0.04 / 0.50 -0.01 / 0.63 -0.33 / 0.76

Acknowledgements

We thank the Fermilab staff and the technical staffs of the participating
institutions for their vital contributions. This work was supported by the U.S.
Department of Energy and National Science Foundation; the Italian Istituto
Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Sci-
ence and Technology of Japan; the Natural Sciences and Engineering Research
Council of Canada; the National Science Council of the Republic of China; the
Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesmin-
isterium für Bildung und Forschung, Germany; the World Class University Pro-
gram, the National Research Foundation of Korea; the Science and Technology
Facilities Council and the Royal Society, UK; the Institut National de Physique
Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic
Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-
Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

References

[1] C.T. Hill and S.J. Parke, Phys. Rev. D 49 (1994) 4454.

[2] C.T. Hill, Phys. Lett. B 345 (1995) 483.

[3] K. J. F. Gaemers and F. Hoogeveen, Phys. Lett. B 146 (1984) 347.

[4] D. Dicus, A. Stange and S. Willenbrock, Phys. Lett. B 333 (1994) 126.

[5] A. Leike, Phys. Rept. 317 (1999) 143.

[6] B. Lillie, L. Randall, L.-T. Wang, J. High Energy Phys. 09 (2007) 074.

[7] T. G. Rizzo, Phys. Rev. D 61 (2000) 055005.

14



[8] T. Affolder et al. (CDF Collaboration), Phys. Rev. Lett. 85 (2000) 2062.

[9] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 92 (2004) 221801.

[10] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100 (2008)
231801.

[11] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 77 (2008) 051102.

[12] T. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 668 (2008) 98.

[13] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71 (2005) 032001.

[14] M. Cacciari et al., J. High Energy Phys. 0404 (2004) 68.

[15] We use a coordinate system defined about the proton beam direction, which
is taken as the z axis; the x axis lies in the horizontal plane. Then θ is the
usual polar angle and φ is the azimuthal angle. We define the pseudorapidity
η of a particle’s three-momentum as η ≡ − ln(tan θ

2 ). The transverse energy
and momentum are defined as ET = E sin θ and pT = p sin θ where E is
the energy measured by the calorimeter and p is the momentum measured
in the tracking system. The missing transverse energy is defined as 6ET =
| −

∑
i Ei

T~ni| where ~ni is a unit vector in the transverse plane that points
from the event vertex to the azimuth of the ith calorimeter tower.

[16] A. Abulencia et al. (CDF Collaboration), J. Phys. G: Nucl. Part. Phys. 34
(2007) 2457.

[17] A. Bhatti et al., Nucl. Instrum. Methods, A 566 (2006) 375.
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